วันอาทิตย์ที่ 29 เมษายน พ.ศ. 2561



การชนและโมเมนตัม
โมเมนตัม หมายถึง  ปริมาณการเคลื่อนที่ของวัตถุที่พยายามทำให้วัตถุเคลื่อนที่ต่อไป ซึ่งหาได้จากผลคูณของมวลกับความเร็ว เขียนสมการได้คือ
โมเมนตัม = มวล × ความเร็ว
P = m v ………………………………….(6.1)
เมื่อ       P = โมเมนตัม หน่วยเป็น kg.m/s (N.s)
m = มวลของวัตถุ หน่วยเป็น kg
v = ความเร็วของวัตถุ หน่วยเป็น m/s
ข้อควรจำ            1. โมเมนตัมเป็นปริมาณเวกเตอร์ คือมีทั้งขนาดและทิศทาง
2. โมเมนตัมขณะใด ๆ ของวัตถุจะมีทิศทางเดียวกับความเร็วเสมอ
3. ขนาดของโมเมนตัมเท่ากับ mv เมื่อ v เป็นขนาดของความเร็ว

แรงและการเปลี่ยนโมเมนตัม
            จากกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน ที่ว่า ความเร่งของวัตถุเป็นปฏิภาคโดยตรงกับแรงลัพธ์ที่กระทำ และเป็นปฏิภาคผกผันกับมวลของวัตถุจะได้ว่า

ดังนั้นจึงสรุปได้ว่า แรงลัพธ์ที่กระทำต่อวัตถุจะเท่ากับอัตราการเปลี่ยนโมเมนตัมของวัตถุนั้น

การดลและแรงดล (Impulse and Impulsive Force)
           การดล (I ) คือผลการกระทำของแรงอย่างต่อเนื่องในช่วงเวลาใด ๆ มีค่าเท่ากับผลคูณของแรงกับระยะเวลาที่แรงกระทำต่อวัตถุนั้น
ถ้าแรง F กระทำต่อวัตถุในช่วงเวลา Dt
การดล (I ) = F. Dt
จากกฎข้อที่ 2 ของนิวตัน     

\ I = F. D t = mv - mu ……………………… (6.3)
\ I = F. D t = mv - mu = โมเมนตัมที่เปลี่ยนไป
การดลเป็นปริมาณเวกเตอร์ที่มีทิศเดียวกับแรง P และมีหน่วยเช่นเดียวกับหน่วยของโมเมนตัม คือ กิโลกรัม.เมตร/วินาที
แรงดล ( F ) คือ แรงที่กระทำต่อวัตถุในช่วงเวลาสั้น ๆ แรงดลเป็นแรงธรรมดาแบบแรงทั่ว ๆ ไปแต่เรียกชื่อเสียใหม่ว่า แรงดล เพราะเป็นแรงที่เกิดในช่วงเวลาสั้น ๆ ได้แก่แรงที่เกิดการกระทบกันอย่าง รวดเร็ว เช่น การตอกตะปู แรงดลมีค่าเท่ากับโมเมนตัมที่เปลี่ยนไปในช่วงเวลาสั้น ๆ แรงดลมีค่าไม่คงที่ดังนั้น แรงดลที่เกิดขึ้นจึงมีค่าเฉลี่ยเสมอ

การชน
การชนกันของวัตถุ( มวลวิ่งไปชนมวล ) จะเป็นไปตามหลักคงที่ของโมเมนตัม (กฎอนุรักษ์ โมเมนตัม คือ   ผลรวมโมเมนตัมของระบบมีค่าคงตัว )
 การชนในแนวตรง ( จุดศูนย์กลางตรงกัน ) แบ่งเป็น
1.       การชนแบบยืดหยุ่น ( ไม่สูญเสียพลังงาน ) ผลของการชนจะเป็นไปตามกฎการอนุรักษ์ โมเมนตัม และกฎการอนุรักษ์พลังงาน ดังนี้คือ
1.1    ผลรวมของโมเมนตัมของระบบมีค่าคงตัว
m1 u1 + m2 u2 = m1 v1 + m2 v2 ………………………….. (6.4)
1.2    ผลรวมพลังงานของระบบมีค่าคงตัว
½ m1 u1 2 + ½ m2 u2 2 = ½ m1 v1 2 + ½ m2 u2 2 ………………. ( 6.5)
 จากสูตรสมการทั้ง 2 เขียนเป็นสูตรคำนวณใหม่ได้ดังนี้
u1 + v1 = u2 + v2 ……………………………………. (6.6)
หรือ u1 - u2 = v2 - v1 ……………………………………. (6.7)

2.       การชนแบบไม่ยืดหยุ่น
การชนแบบไม่ยืดหยุ่น (สูญเสียพลังงาน) ผลของการชนจะเป็นไปตามกฎการอนุรักษ์ โมเมนตัม แต่ไม่เป็นไปตามกฎการอนุรักษ์พลังงาน สรุปได้ดังนี้ คือ
2.1    ผลรวมโมเมนตัมของระบบคงตัว
 åP ก่อนชน = åP หลังชน
m1 u1 + m2 u2 = m1 v1 + m2 v2 (ชนแล้วแยก) ………………..(6.8)
m1 u1 + m2 u2 = (m1 + m2 )v (ชนแล้วติดกันไป) …………..(6.9)
2.2    ผลรวมพลังงานของระบบมีค่าไม่คงตัว
จากสมการ 6.7           v2 - v1 คือ ความเร็วในการแยกออกจากกัน
u1 - u2 คือ ความเร็วในการเข้าหากัน


การชนในสองมิติ
การชนในสองมิติ คือ หลังจากการชนของวัตถุทั้งสอง วัตถุจะเคลื่อนที่แยกจากกันในแนวที่ ท ามุมกัน การที่วัตถุเคลื่อนที่ท ามุมกันภายหลังการชนเนื่องจาก การเคลื่อนที่ของศูนย์กลางมวลของวัตถุที่ เคลื่อนที่เข้าหาศูนย์กลางมวลของวัตถุที่ถูกชนดังรูป
Image result for การชนใน 2 มิติ 

ขั้นตอนการพิจารณา
1. พิจารณาตามแนวแกน X จากกฎอนุรักษ์โมเมนตัมจะได้ว่า

P ก่อนชนP หลังชน
m1u1 + m2u2 = m1v1cosθ1 + m2v2cosθ2 ………………. (6.11)
2. พิจารณาตามแนวแกน Y จากกฎอนุรักษ์โมเมนตัมจะได้ว่า

∑P ก่อนชน = ∑P หลังชน
0 + 0 = m1v1sinθ1 - m2v2sinθ2
m1v1sinθ1 = m2v2sinθ2 …………………………….(6.12)
การชนในสองมิติมีทั้งการชนแบบยืดหยุ่นและการชนแบบไม่ยืดหยุ่น ผลรวมของโมเมนตัม ของระบบและผลรวมของพลังงานจลน์ของระบบก่อนการชนและหลังการชน มีผลเช่นเดียวกับการชนในหนึ่งมิติ

ไม่มีความคิดเห็น:

แสดงความคิดเห็น